
CHAPTER

9
Inheritance

IN THIS CHAPTER
• Derived Class and Base Class 373

• Derived Class Constructors 380

• Overriding Member Functions 382

• Which Function Is Used? 383

• Inheritance in the English Distance Class 384

• Class Hierarchies 388

• Inheritance and Graphics Shapes 393

• Public and Private Inheritance 396

• Levels of Inheritance 399

• Multiple Inheritance 403

• private Derivation in EMPMULT 409

• Ambiguity in Multiple Inheritance 413

• Aggregation: Classes Within Classes 414

• Inheritance and Program Development 420

10 3087 CH09 11/29/01 2:22 PM Page 371

Chapter 9
372

Inheritance is probably the most powerful feature of object-oriented programming, after classes
themselves. Inheritance is the process of creating new classes, called derived classes, from
existing or base classes. The derived class inherits all the capabilities of the base class but
can add embellishments and refinements of its own. The base class is unchanged by this
process. The inheritance relationship is shown in Figure 9.1.

FIGURE 9.1
Inheritance.

The arrow in Figure 9.1 goes in the opposite direction of what you might expect. If it pointed
down we would label it inheritance. However, the more common approach is to point the
arrow up, from the derived class to the base class, and to think of it as a “derived from” arrow.

10 3087 CH09 11/29/01 2:22 PM Page 372

Inheritance is an essential part of OOP. Its big payoff is that it permits code reusability. Once
a base class is written and debugged, it need not be touched again, but, using inheritance, can
nevertheless be adapted to work in different situations. Reusing existing code saves time and
money and increases a program’s reliability. Inheritance can also help in the original conceptu-
alization of a programming problem, and in the overall design of the program.

An important result of reusability is the ease of distributing class libraries. A programmer can
use a class created by another person or company, and, without modifying it, derive other
classes from it that are suited to particular situations.

We’ll examine these features of inheritance in more detail after we’ve seen some specific
instances of inheritance at work.

Derived Class and Base Class
Remember the COUNTPP3 example from Chapter 8, “Operator Overloading”? This program
used a class Counter as a general-purpose counter variable. A count could be initialized to 0 or
to a specified number with constructors, incremented with the ++ operator, and read with the
get_count() operator.

Let’s suppose that we have worked long and hard to make the Counter class operate just the
way we want, and we’re pleased with the results, except for one thing. We really need a way to
decrement the count. Perhaps we’re counting people entering a bank, and we want to increment
the count when they come in and decrement it when they go out, so that the count represents
the number of people in the bank at any moment.

We could insert a decrement routine directly into the source code of the Counter class. However,
there are several reasons that we might not want to do this. First, the Counter class works very
well and has undergone many hours of testing and debugging. (Of course that’s an exaggeration
in this case, but it would be true in a larger and more complex class.) If we start fooling around
with the source code for Counter, the testing process will need to be carried out again, and of
course we may foul something up and spend hours debugging code that worked fine before we
modified it.

In some situations there might be another reason for not modifying the Counter class: We
might not have access to its source code, especially if it was distributed as part of a class
library. (We’ll discuss this issue further in Chapter 13, “Multifile Programs.”)

To avoid these problems we can use inheritance to create a new class based on Counter, without
modifying Counter itself. Here’s the listing for COUNTEN, which includes a new class, CountDn,
that adds a decrement operator to the Counter class:

Inheritance

9

IN
H

ER
ITA

N
C

E
373

10 3087 CH09 11/29/01 2:22 PM Page 373

// counten.cpp
// inheritance with Counter class
#include <iostream>
using namespace std;
//
class Counter //base class

{
protected: //NOTE: not private

unsigned int count; //count
public:

Counter() : count(0) //no-arg constructor
{ }

Counter(int c) : count(c) //1-arg constructor
{ }

unsigned int get_count() const //return count
{ return count; }

Counter operator ++ () //incr count (prefix)
{ return Counter(++count); }

};
//
class CountDn : public Counter //derived class

{
public:

Counter operator -- () //decr count (prefix)
{ return Counter(--count); }

};
//
int main()

{
CountDn c1; //c1 of class CountDn

cout << “\nc1=” << c1.get_count(); //display c1

++c1; ++c1; ++c1; //increment c1, 3 times
cout << “\nc1=” << c1.get_count(); //display it

--c1; --c1; //decrement c1, twice
cout << “\nc1=” << c1.get_count(); //display it
cout << endl;
return 0;
}

The listing starts off with the Counter class, which (with one small exception, which we’ll
look at later) has not changed since its appearance in COUNTPP3. Notice that, for simplicity,
we haven’t modeled this program on the POSTFIX program, which incorporated the second
overloaded ++ operator to provide postfix notation.

Chapter 9
374

10 3087 CH09 11/29/01 2:22 PM Page 374

Specifying the Derived Class
Following the Counter class in the listing is the specification for a new class, CountDn. This
class incorporates a new function, operator--(), which decrements the count. However—and
here’s the key point—the new CountDn class inherits all the features of the Counter class.
CountDn doesn’t need a constructor or the get_count() or operator++() functions, because
these already exist in Counter.

The first line of CountDn specifies that it is derived from Counter:

class CountDn : public Counter

Here we use a single colon (not the double colon used for the scope resolution operator),
followed by the keyword public and the name of the base class Counter. This sets up the
relationship between the classes. This line says that CountDn is derived from the base class
Counter. (We’ll explore the effect of the keyword public later.)

Generalization in UML Class Diagrams
In the UML, inheritance is called generalization, because the parent class is a more general form
of the child class. Or to put it another way, the child is more specific version of the parent. (We
introduced the UML in Chapter 1, “The Big Picture,” and encountered class diagrams in Chapter
8, “Operator Overloading.”) The generalization in the COUNTEN program is shown in Figure 9.2.

Inheritance

9

IN
H

ER
ITA

N
C

E
375

Counter

count
counter()
counter(int)
get_count()
operator++()

CountDn

operator--()

FIGURE 9.2
UML class diagram for COUNTEN.

10 3087 CH09 11/29/01 2:22 PM Page 375

In UML class diagrams, generalization is indicated by a triangular arrowhead on the line
connecting the parent and child classes. Remember that the arrow means inherited from or
derived from or is a more specific version of. The direction of the arrow emphasizes that the
derived class refers to functions and data in the base class, while the base class has no access
to the derived class.

Notice that we’ve added attributes (member data) and operations (member functions) to the
classes in the diagram. The top area holds the class title, the middle area holds attributes, and
the bottom area is for operations.

Accessing Base Class Members
An important topic in inheritance is knowing when a member function in the base class can be
used by objects of the derived class. This is called accessibility. Let’s see how the compiler
handles the accessibility issue in the COUNTEN example.

Substituting Base Class Constructors
In the main() part of COUNTEN we create an object of class CountDn:

CountDn c1;

This causes c1 to be created as an object of class CountDn and initialized to 0. But wait—how
is this possible? There is no constructor in the CountDn class specifier, so what entity carries
out the initialization? It turns out that—at least under certain circumstances—if you don’t spec-
ify a constructor, the derived class will use an appropriate constructor from the base class. In
COUNTEN there’s no constructor in CountDn, so the compiler uses the no-argument constructor
from Count.

This flexibility on the part of the compiler—using one function because another isn’t available—
appears regularly in inheritance situations. Generally, the substitution is what you want, but
sometimes it can be unnerving.

Substituting Base Class Member Functions
The object c1 of the CountDn class also uses the operator++() and get_count() functions
from the Counter class. The first is used to increment c1:

++c1;

The second is used to display the count in c1:

cout << “\nc1=” << c1.get_count();

Again the compiler, not finding these functions in the class of which c1 is a member, uses
member functions from the base class.

Chapter 9
376

10 3087 CH09 11/29/01 2:22 PM Page 376

Output of COUNTEN
In main() we increment c1 three times, print out the resulting value, decrement c1 twice, and
finally print out its value again. Here’s the output:

c1=0 ← after initialization
c1=3 ← after ++c1, ++c1, ++c1
c1=1 ← after --c1, --c1

The ++ operator, the constructors, the get_count() function in the Counter class, and the --
operator in the CountDn class all work with objects of type CountDn.

The protected Access Specifier
We have increased the functionality of a class without modifying it. Well, almost without
modifying it. Let’s look at the single change we made to the Counter class.

The data in the classes we’ve looked at so far, including count in the Counter class in the earlier
COUNTPP3 program, have used the private access specifier.

In the Counter class in COUNTEN, count is given a new specifier: protected. What does this do?

Let’s first review what we know about the access specifiers private and public. A member
function of a class can always access class members, whether they are public or private. But an
object declared externally can only invoke (using the dot operator, for example) public members
of the class. It’s not allowed to use private members. For instance, suppose an object objA is an
instance of class A, and function funcA() is a member function of A. Then in main() (or any
other function that is not a member of A) the statement

objA.funcA();

will not be legal unless funcA() is public. The object objA cannot invoke private members of
class A. Private members are, well, private. This is shown in Figure 9.3.

This is all we need to know if we don’t use inheritance. With inheritance, however, there is a
whole raft of additional possibilities. The question that concerns us at the moment is, can
member functions of the derived class access members of the base class? In other words, can
operator--() in CountDn access count in Counter? The answer is that member functions can
access members of the base class if the members are public, or if they are protected. They
can’t access private members.

We don’t want to make count public, since that would allow it to be accessed by any function
anywhere in the program and eliminate the advantages of data hiding. A protected member,
on the other hand, can be accessed by member functions in its own class or—and here’s the
key—in any class derived from its own class. It can’t be accessed from functions outside these
classes, such as main(). This is just what we want. The situation is shown in Figure 9.4.

Inheritance

9

IN
H

ER
ITA

N
C

E
377

10 3087 CH09 11/29/01 2:22 PM Page 377

FIGURE 9.3
Access specifiers without inheritance.

Chapter 9
378

class A

ObjA

Object of class A can access
only public members of A.

Member function of class A
can access both private and
public members.

private
Not
allowed

public

FIGURE 9.4
Access specifiers with inheritance.

10 3087 CH09 11/29/01 2:22 PM Page 378

Table 9.1 summarizes the situation in a different way.

TABLE 9.1 Inheritance and Accessibility

Access Accessible from Accessible from Accessible from
Specifier Own Class Derived Class Objects Outside Class

public yes yes yes

protected yes yes no

private yes no no

The moral is that if you are writing a class that you suspect might be used, at any point in the
future, as a base class for other classes, then any member data that the derived classes might
need to access should be made protected rather than private. This ensures that the class is
“inheritance ready.”

Dangers of protected
You should know that there’s a disadvantage to making class members protected. Say you’ve
written a class library, which you’re distributing to the public. Any programmer who buys this
library can access protected members of your classes simply by deriving other classes from
them. This makes protected members considerably less secure than private members. To avoid
corrupted data, it’s often safer to force derived classes to access data in the base class using
only public functions in the base class, just as ordinary main() programs must do. Using the
protected specifier leads to simpler programming, so we rely on it—perhaps a bit too much—
in the examples in this book. You’ll need to weigh the advantages of protected against its
disadvantages in your own programs.

Base Class Unchanged
Remember that, even if other classes have been derived from it, the base class remains
unchanged. In the main() part of COUNTEN, we could define objects of type Counter:

Counter c2; ← object of base class

Such objects would behave just as they would if CountDn didn’t exist.

Note also that inheritance doesn’t work in reverse. The base class and its objects don’t know
anything about any classes derived from the base class. In this example that means that objects
of class Counter, such as c2, can’t use the operator--() function in CountDn. If you want a
counter that you can decrement, it must be of class CountDn, not Counter.

Inheritance

9

IN
H

ER
ITA

N
C

E
379

10 3087 CH09 11/29/01 2:22 PM Page 379

Other Terms
In some languages the base class is called the superclass and the derived class is called the
subclass. Some writers also refer to the base class as the parent and the derived class as the child.

Derived Class Constructors
There’s a potential glitch in the COUNTEN program. What happens if we want to initialize a
CountDn object to a value? Can the one-argument constructor in Counter be used? The answer
is no. As we saw in COUNTEN, the compiler will substitute a no-argument constructor from the base
class, but it draws the line at more complex constructors. To make such a definition work we must
write a new set of constructors for the derived class. This is shown in the COUNTEN2 program.

// counten2.cpp
// constructors in derived class
#include <iostream>
using namespace std;
//
class Counter

{
protected: //NOTE: not private

unsigned int count; //count
public:

Counter() : count() //constructor, no args
{ }

Counter(int c) : count(c) //constructor, one arg
{ }

unsigned int get_count() const //return count
{ return count; }

Counter operator ++ () //incr count (prefix)
{ return Counter(++count); }

};
//
class CountDn : public Counter

{
public:

CountDn() : Counter() //constructor, no args
{ }

CountDn(int c) : Counter(c) //constructor, 1 arg
{ }

CountDn operator -- () //decr count (prefix)
{ return CountDn(--count); }

};
//
int main()

{

Chapter 9
380

10 3087 CH09 11/29/01 2:22 PM Page 380

CountDn c1; //class CountDn
CountDn c2(100);

cout << “\nc1=” << c1.get_count(); //display
cout << “\nc2=” << c2.get_count(); //display

++c1; ++c1; ++c1; //increment c1
cout << “\nc1=” << c1.get_count(); //display it

--c2; --c2; //decrement c2
cout << “\nc2=” << c2.get_count(); //display it

CountDn c3 = --c2; //create c3 from c2
cout << “\nc3=” << c3.get_count(); //display c3
cout << endl;
return 0;
}

This program uses two new constructors in the CountDn class. Here is the no-argument constructor:

CountDn() : Counter()
{ }

This constructor has an unfamiliar feature: the function name following the colon. This
construction causes the CountDn() constructor to call the Counter() constructor in the base
class. In main(), when we say

CountDn c1;

the compiler will create an object of type CountDn and then call the CountDn constructor to
initialize it. This constructor will in turn call the Counter constructor, which carries out the
work. The CountDn() constructor could add additional statements of its own, but in this case
it doesn’t need to, so the function body between the braces is empty.

Calling a constructor from the initialization list may seem odd, but it makes sense. You want
to initialize any variables, whether they’re in the derived class or the base class, before any
statements in either the derived or base-class constructors are executed. By calling the base-
class constructor before the derived-class constructor starts to execute, we accomplish this.

The statement

CountDn c2(100);

in main() uses the one-argument constructor in CountDn. This constructor also calls the
corresponding one-argument constructor in the base class:

CountDn(int c) : Counter(c) ← argument c is passed to Counter
{ }

Inheritance

9

IN
H

ER
ITA

N
C

E
381

10 3087 CH09 11/29/01 2:22 PM Page 381

This construction causes the argument c to be passed from CountDn() to Counter(), where it
is used to initialize the object.

In main(), after initializing the c1 and c2 objects, we increment one and decrement the other
and then print the results. The one-argument constructor is also used in an assignment statement.

CountDn c3 = --c2;

Overriding Member Functions
You can use member functions in a derived class that override—that is, have the same name
as—those in the base class. You might want to do this so that calls in your program work the
same way for objects of both base and derived classes.

Here’s an example based on the STAKARAY program from Chapter 7, “Arrays and Strings.” That
program modeled a stack, a simple data storage device. It allowed you to push integers onto
the stack and pop them off. However, STAKARAY had a potential flaw. If you tried to push too
many items onto the stack, the program might bomb, since data would be placed in memory
beyond the end of the st[] array. Or if you tried to pop too many items, the results would be
meaningless, since you would be reading data from memory locations outside the array.

To cure these defects we’ve created a new class, Stack2, derived from Stack. Objects of
Stack2 behave in exactly the same way as those of Stack, except that you will be warned if
you attempt to push too many items on the stack or if you try to pop an item from an empty
stack. Here’s the listing for STAKEN:

// staken.cpp
// overloading functions in base and derived classes
#include <iostream>
using namespace std;
#include <process.h> //for exit()
//
class Stack

{
protected: //NOTE: can’t be private

enum { MAX = 3 }; //size of stack array
int st[MAX]; //stack: array of integers
int top; //index to top of stack

public:
Stack() //constructor

{ top = -1; }
void push(int var) //put number on stack

{ st[++top] = var; }
int pop() //take number off stack

{ return st[top--]; }

Chapter 9
382

10 3087 CH09 11/29/01 2:22 PM Page 382

};
//
class Stack2 : public Stack

{
public:

void push(int var) //put number on stack
{
if(top >= MAX-1) //error if stack full

{ cout << “\nError: stack is full”; exit(1); }
Stack::push(var); //call push() in Stack class
}

int pop() //take number off stack
{
if(top < 0) //error if stack empty

{ cout << “\nError: stack is empty\n”; exit(1); }
return Stack::pop(); //call pop() in Stack class
}

};
//
int main()

{
Stack2 s1;

s1.push(11); //push some values onto stack
s1.push(22);
s1.push(33);

cout << endl << s1.pop(); //pop some values from stack
cout << endl << s1.pop();
cout << endl << s1.pop();
cout << endl << s1.pop(); //oops, popped one too many...
cout << endl;
return 0;
}

In this program the Stack class is just the same as it was in the STAKARAY program, except that
the data members have been made protected.

Which Function Is Used?
The Stack2 class contains two functions, push() and pop(). These functions have the same
names, and the same argument and return types, as the functions in Stack. When we call these
functions from main(), in statements like

s1.push(11);

Inheritance

9

IN
H

ER
ITA

N
C

E
383

10 3087 CH09 11/29/01 2:22 PM Page 383

how does the compiler know which of the two push() functions to use? Here’s the rule: When
the same function exists in both the base class and the derived class, the function in the derived
class will be executed. (This is true of objects of the derived class. Objects of the base class
don’t know anything about the derived class and will always use the base class functions.) We
say that the derived class function overrides the base class function. So in the preceding state-
ment, since s1 is an object of class Stack2, the push() function in Stack2 will be executed,
not the one in Stack.

The push() function in Stack2 checks to see whether the stack is full. If it is, it displays an
error message and causes the program to exit. If it isn’t, it calls the push() function in Stack.
Similarly, the pop() function in Stack2 checks to see whether the stack is empty. If it is, it
prints an error message and exits; otherwise, it calls the pop() function in Stack.

In main() we push three items onto the stack, but we pop four. The last pop elicits an error
message

33
22
11
Error: stack is empty

and terminates the program.

Scope Resolution with Overridden Functions
How do push() and pop() in Stack2 access push() and pop() in Stack? They use the scope
resolution operator, ::, in the statements

Stack::push(var);

and

return Stack::pop();

These statements specify that the push() and pop() functions in Stack are to be called. Without
the scope resolution operator, the compiler would think the push() and pop() functions in
Stack2 were calling themselves, which—in this case—would lead to program failure. Using the
scope resolution operator allows you to specify exactly what class the function is a member of.

Inheritance in the English Distance Class
Here’s a somewhat more complex example of inheritance. So far in this book the various programs
that used the English Distance class assumed that the distances to be represented would
always be positive. This is usually the case in architectural drawings. However, if we were

Chapter 9
384

10 3087 CH09 11/29/01 2:22 PM Page 384

measuring, say, the water level of the Pacific Ocean as the tides varied, we might want to be
able to represent negative feet-and-inches quantities. (Tide levels below mean-lower-low-water
are called minus tides; they prompt clam diggers to take advantage of the larger area of exposed
beach.)

Let’s derive a new class from Distance. This class will add a single data item to our feet-and-
inches measurements: a sign, which can be positive or negative. When we add the sign, we’ll
also need to modify the member functions so they can work with signed distances. Here’s the
listing for ENGLEN:

// englen.cpp
// inheritance using English Distances
#include <iostream>
using namespace std;
enum posneg { pos, neg }; //for sign in DistSign
//
class Distance //English Distance class

{
protected: //NOTE: can’t be private

int feet;
float inches;

public: //no-arg constructor
Distance() : feet(0), inches(0.0)

{ } //2-arg constructor)
Distance(int ft, float in) : feet(ft), inches(in)

{ }
void getdist() //get length from user

{
cout << “\nEnter feet: “; cin >> feet;
cout << “Enter inches: “; cin >> inches;
}

void showdist() const //display distance
{ cout << feet << “\’-” << inches << ‘\”’; }

};
//
class DistSign : public Distance //adds sign to Distance

{
private:

posneg sign; //sign is pos or neg
public:

//no-arg constructor
DistSign() : Distance() //call base constructor

{ sign = pos; } //set the sign to +

Inheritance

9

IN
H

ER
ITA

N
C

E
385

10 3087 CH09 11/29/01 2:22 PM Page 385

//2- or 3-arg constructor
DistSign(int ft, float in, posneg sg=pos) :

Distance(ft, in) //call base constructor
{ sign = sg; } //set the sign

void getdist() //get length from user
{
Distance::getdist(); //call base getdist()
char ch; //get sign from user
cout << “Enter sign (+ or -): “; cin >> ch;
sign = (ch==’+’) ? pos : neg;
}

void showdist() const //display distance
{
cout << ((sign==pos) ? “(+)” : “(-)”); //show sign
Distance::showdist(); //ft and in
}

};
//
int main()

{
DistSign alpha; //no-arg constructor
alpha.getdist(); //get alpha from user

DistSign beta(11, 6.25); //2-arg constructor

DistSign gamma(100, 5.5, neg); //3-arg constructor

//display all distances
cout << “\nalpha = “; alpha.showdist();
cout << “\nbeta = “; beta.showdist();
cout << “\ngamma = “; gamma.showdist();
cout << endl;
return 0;
}

Here the DistSign class adds the functionality to deal with signed numbers. The Distance
class in this program is just the same as in previous programs, except that the data is protected.
Actually in this case it could be private, because none of the derived-class functions accesses
it. However, it’s safer to make it protected so that a derived-class function could access it if
necessary.

Chapter 9
386

10 3087 CH09 11/29/01 2:22 PM Page 386

Operation of ENGLEN

The main() program declares three different signed distances. It gets a value for alpha from
the user and initializes beta to (+)11'–6.25'' and gamma to (–)100'–5.5''. In the output we use
parentheses around the sign to avoid confusion with the hyphen separating feet and inches. Here’s
some sample output:

Enter feet: 6
Enter inches: 2.5
Enter sign (+ or -): -

alpha = (-)6’-2.5”
beta = (+)11’-6.25”
gamma = (-)100’-5.5”

The DistSign class is derived from Distance. It adds a single variable, sign, which is of type
posneg. The sign variable will hold the sign of the distance. The posneg type is defined in an
enum statement to have two possible values: pos and neg.

Constructors in DistSign
DistSign has two constructors, mirroring those in Distance. The first takes no arguments,
the second takes either two or three arguments. The third, optional, argument in the second
constructor is a sign, either pos or neg. Its default value is pos. These constructors allow us to
define variables (objects) of type DistSign in several ways.

Both constructors in DistSign call the corresponding constructors in Distance to set the feet-
and-inches values. They then set the sign variable. The no-argument constructor always sets it
to pos. The second constructor sets it to pos if no third-argument value has been provided, or
to a value (pos or neg) if the argument is specified.

The arguments ft and in, passed from main() to the second constructor in DistSign, are simply
forwarded to the constructor in Distance.

Member Functions in DistSign
Adding a sign to Distance has consequences for both of its member functions. The getdist()
function in the DistSign class must ask the user for the sign as well as for feet-and-inches
values, and the showdist() function must display the sign along with the feet and inches. These
functions call the corresponding functions in Distance, in the lines

Distance::getdist();

and

Distance::showdist();

Inheritance

9

IN
H

ER
ITA

N
C

E
387

10 3087 CH09 11/29/01 2:22 PM Page 387

These calls get and display the feet and inches values. The body of getdist() and showdist()

in DistSign then go on to deal with the sign.

Abetting Inheritance
C++ is designed to make it efficient to create a derived class. Where we want to use parts of
the base class, it’s easy to do so, whether these parts are data, constructors, or member functions.
Then we add the functionality we need to create the new improved class. Notice that in ENGLEN

we didn’t need to duplicate any code; instead we made use of the appropriate functions in the
base class.

Class Hierarchies
In the examples so far in this chapter, inheritance has been used to add functionality to an
existing class. Now let’s look at an example where inheritance is used for a different purpose:
as part of the original design of a program.

Our example models a database of employees of a widget company. We’ve simplified the situation
so that only three kinds of employees are represented. Managers manage, scientists perform
research to develop better widgets, and laborers operate the dangerous widget-stamping presses.

The database stores a name and an employee identification number for all employees, no matter
what their category. However, for managers, it also stores their titles and golf club dues. For
scientists, it stores the number of scholarly articles they have published. Laborers need no
additional data beyond their names and numbers.

Our example program starts with a base class employee. This class handles the employee’s last
name and employee number. From this class three other classes are derived: manager, scientist,
and laborer. The manager and scientist classes contain additional information about these
categories of employee, and member functions to handle this information, as shown in Figure 9.5.

Chapter 9
388

10 3087 CH09 11/29/01 2:22 PM Page 388

FIGURE 9.5
UML class diagram for EMPLOY.

Here’s the listing for EMPLOY:

// employ.cpp
// models employee database using inheritance
#include <iostream>
using namespace std;
const int LEN = 80; //maximum length of names
//
class employee //employee class

{
private:

char name[LEN]; //employee name
unsigned long number; //employee number

public:
void getdata()

{
cout << “\n Enter last name: “; cin >> name;
cout << “ Enter number: “; cin >> number;
}

Inheritance

9

IN
H

ER
ITA

N
C

E
389

employee

name
number

scientist

publications

manager

title
club dues

laborer

10 3087 CH09 11/29/01 2:22 PM Page 389

void putdata() const
{
cout << “\n Name: “ << name;
cout << “\n Number: “ << number;
}

};
//
class manager : public employee //management class

{
private:

char title[LEN]; //”vice-president” etc.
double dues; //golf club dues

public:
void getdata()

{
employee::getdata();
cout << “ Enter title: “; cin >> title;
cout << “ Enter golf club dues: “; cin >> dues;
}

void putdata() const
{
employee::putdata();
cout << “\n Title: “ << title;
cout << “\n Golf club dues: “ << dues;
}

};
//
class scientist : public employee //scientist class

{
private:

int pubs; //number of publications
public:

void getdata()
{
employee::getdata();
cout << “ Enter number of pubs: “; cin >> pubs;
}

void putdata() const
{
employee::putdata();
cout << “\n Number of publications: “ << pubs;
}

};
//
class laborer : public employee //laborer class

{

Chapter 9
390

10 3087 CH09 11/29/01 2:22 PM Page 390

};
//
int main()

{
manager m1, m2;
scientist s1;
laborer l1;

cout << endl; //get data for several employees
cout << “\nEnter data for manager 1”;
m1.getdata();

cout << “\nEnter data for manager 2”;
m2.getdata();

cout << “\nEnter data for scientist 1”;
s1.getdata();

cout << “\nEnter data for laborer 1”;
l1.getdata();

//display data for several employees
cout << “\nData on manager 1”;
m1.putdata();

cout << “\nData on manager 2”;
m2.putdata();

cout << “\nData on scientist 1”;
s1.putdata();

cout << “\nData on laborer 1”;
l1.putdata();
cout << endl;
return 0;
}

The main() part of the program declares four objects of different classes: two managers, a
scientist, and a laborer. (Of course many more employees of each type could be defined, but
the output would become rather large.) It then calls the getdata() member functions to obtain
information about each employee, and the putdata() function to display this information.
Here’s a sample interaction with EMPLOY. First the user supplies the data.

Enter data for manager 1
Enter last name: Wainsworth
Enter number: 10
Enter title: President

Inheritance

9

IN
H

ER
ITA

N
C

E
391

10 3087 CH09 11/29/01 2:22 PM Page 391

Enter golf club dues: 1000000
Enter data on manager 2

Enter last name: Bradley
Enter number: 124
Enter title: Vice-President
Enter golf club dues: 500000

Enter data for scientist 1
Enter last name: Hauptman-Frenglish
Enter number: 234234
Enter number of pubs: 999

Enter data for laborer 1
Enter last name: Jones
Enter number: 6546544

The program then plays it back.

Data on manager 1
Name: Wainsworth
Number: 10
Title: President
Golf club dues: 1000000

Data on manager 2
Name: Bradley
Number: 124
Title: Vice-President
Golf club dues: 500000

Data on scientist 1
Name: Hauptman-Frenglish
Number: 234234
Number of publications: 999

Data on laborer 1
Name: Jones
Number: 6546544

A more sophisticated program would use an array or some other container to arrange the data
so that a large number of employee objects could be accommodated.

“Abstract” Base Class
Notice that we don’t define any objects of the base class employee. We use this as a general
class whose sole purpose is to act as a base from which other classes are derived.

The laborer class operates identically to the employee class, since it contains no additional
data or functions. It may seem that the laborer class is unnecessary, but by making it a separate
class we emphasize that all classes are descended from the same source, employee. Also, if in
the future we decided to modify the laborer class, we would not need to change the declaration
for employee.

Chapter 9
392

10 3087 CH09 11/29/01 2:22 PM Page 392

Classes used only for deriving other classes, as employee is in EMPLOY, are sometimes loosely
called abstract classes, meaning that no actual instances (objects) of this class are created.
However, the term abstract has a more precise definition that we’ll look at in Chapter 11,
“Virtual Functions.”

Constructors and Member Functions
There are no constructors in either the base or derived classes, so the compiler creates objects
of the various classes automatically when it encounters definitions like

manager m1, m2;

using the default constructor for manager calling the default constructor for employee.

The getdata() and putdata() functions in employee accept a name and number from the
user and display a name and number. Functions also called getdata() and putdata() in the
manager and scientist classes use the functions in employee, and also do their own work.
In manager, the getdata() function asks the user for a title and the amount of golf club dues,
and putdata() displays these values. In scientist, these functions handle the number of
publications.

Inheritance and Graphics Shapes
In the CIRCLES program in Chapter 6, “Objects and Classes,” we saw a program in which a
class represented graphics circles that could be displayed on the screen. Of course, there are
other kinds of shapes besides circles, such as squares and triangles. The very phrase “kinds of
shapes” implies an inheritance relationship between something called a “shape” and specific
kinds of shapes like circles and squares. We can use this relationship to make a program that is
more robust and easier to understand than a program that treats different shapes as being unre-
lated.

In particular we’ll make a shape class that’s a base class (parent) of three derived classes: a
circle class, a rect (for rectangle) class, and a tria (for triangle) class. As with other pro-
grams that use the Console Graphics Lite functions, you may need to read Appendix E,
“Console Graphics Lite,” and either Appendix C, “Microsoft Visual C++,” or Appendix D,
“Borland C++Builder” for your specific compiler to learn how to build the graphics files into
your program. Here’s the listing for MULTSHAP:

// multshap.cpp
// balls, rects, and polygons
#include “msoftcon.h” //for graphics functions
//
class shape //base class

Inheritance

9

IN
H

ER
ITA

N
C

E
393

10 3087 CH09 11/29/01 2:22 PM Page 393

{
protected:

int xCo, yCo; //coordinates of shape
color fillcolor; //color
fstyle fillstyle; //fill pattern

public: //no-arg constructor
shape() : xCo(0), yCo(0), fillcolor(cWHITE),

fillstyle(SOLID_FILL)
{ } //4-arg constructor

shape(int x, int y, color fc, fstyle fs) :
xCo(x), yCo(y), fillcolor(fc), fillstyle(fs)

{ }
void draw() const //set color and fill style

{
set_color(fillcolor);
set_fill_style(fillstyle);
}

};
//
class circle : public shape

{
private:

int radius; //(xCo, yCo) is center
public:

circle() : shape() //no-arg constr
{ }

//5-arg constructor
circle(int x, int y, int r, color fc, fstyle fs)

: shape(x, y, fc, fs), radius(r)
{ }

void draw() const //draw the circle
{
shape::draw();
draw_circle(xCo, yCo, radius);
}

};
//
class rect : public shape

{
private:

int width, height; //(xCo, yCo) is upper-left corner
public:

rect() : shape(), height(0), width(0) //no-arg ctor
{ } //6-arg ctor

rect(int x, int y, int h, int w, color fc, fstyle fs) :
shape(x, y, fc, fs), height(h), width(w)

Chapter 9
394

10 3087 CH09 11/29/01 2:22 PM Page 394

{ }
void draw() const //draw the rectangle

{
shape::draw();
draw_rectangle(xCo, yCo, xCo+width, yCo+height);
set_color(cWHITE); //draw diagonal
draw_line(xCo, yCo, xCo+width, yCo+height);
}

};
//
class tria : public shape

{
private:

int height; //(xCo, yCo) is tip of pyramid
public:

tria() : shape(), height(0) //no-arg constructor
{ } //5-arg constructor

tria(int x, int y, int h, color fc, fstyle fs) :
shape(x, y, fc, fs), height(h)

{ }
void draw() const //draw the triangle

{
shape::draw();
draw_pyramid(xCo, yCo, height);
}

};
//
int main()

{
init_graphics(); //initialize graphics system

circle cir(40, 12, 5, cBLUE, X_FILL); //create circle
rect rec(12, 7, 10, 15, cRED, SOLID_FILL); //create rectangle
tria tri(60, 7, 11, cGREEN, MEDIUM_FILL); //create triangle

cir.draw(); //draw all shapes
rec.draw();
tri.draw();
set_cursor_pos(1, 25); //lower-left corner
return 0;
}

When executed, this program produces three different shapes: a blue circle, a red rectangle,
and a green triangle. Figure 9.6 shows the output of MULTSHAP.

Inheritance

9

IN
H

ER
ITA

N
C

E
395

10 3087 CH09 11/29/01 2:22 PM Page 395

FIGURE 9.6
Output of the MULTSHAP program.

The characteristics that are common to all shapes, such as their location, color, and fill pattern,
are placed in the shape class. Individual shapes have more specific attributes. A circle has a
radius, for example, while a rectangle has a height and width. A draw() routine in shape handles
the tasks specific to all shapes: setting their color and fill pattern. Overloaded draw() functions
in the circle, rect, and tria classes take care of drawing their specific shapes once the color
and pattern are determined.

As in the last example, the base class shape is an example of an abstract class, in that there is
no meaning to instantiating an object of this class. What shape does a shape object display?
The question doesn’t make sense. Only a specific shape can display itself. The shape class
exists only as a repository of attributes and actions that are common to all shapes.

Public and Private Inheritance
C++ provides a wealth of ways to fine-tune access to class members. One such access-control
mechanism is the way derived classes are declared. Our examples so far have used publicly
derived classes, with declarations like

class manager : public employee

which appeared in the EMPLOY example.

What is the effect of the public keyword in this statement, and what are the alternatives?
Listen up: The keyword public specifies that objects of the derived class are able to access
public member functions of the base class. The alternative is the keyword private. When this
keyword is used, objects of the derived class cannot access public member functions of the
base class. Since objects can never access private or protected members of a class, the result
is that no member of the base class is accessible to objects of the derived class.

Chapter 9
396

10 3087 CH09 11/29/01 2:22 PM Page 396

Access Combinations
There are so many possibilities for access that it’s instructive to look at an example program
that shows what works and what doesn’t. Here’s the listing for PUBPRIV:

// pubpriv.cpp
// tests publicly- and privately-derived classes
#include <iostream>
using namespace std;
//
class A //base class

{
private:

int privdataA; //(functions have the same access
protected: //rules as the data shown here)

int protdataA;
public:

int pubdataA;
};

//
class B : public A //publicly-derived class

{
public:

void funct()
{
int a;
a = privdataA; //error: not accessible
a = protdataA; //OK
a = pubdataA; //OK
}

};
//
class C : private A //privately-derived class

{
public:

void funct()
{
int a;
a = privdataA; //error: not accessible
a = protdataA; //OK
a = pubdataA; //OK
}

};
//
int main()

{
int a;

Inheritance

9

IN
H

ER
ITA

N
C

E
397

10 3087 CH09 11/29/01 2:22 PM Page 397

B objB;
a = objB.privdataA; //error: not accessible
a = objB.protdataA; //error: not accessible
a = objB.pubdataA; //OK (A public to B)

C objC;
a = objC.privdataA; //error: not accessible
a = objC.protdataA; //error: not accessible
a = objC.pubdataA; //error: not accessible (A private to C)
return 0;
}

The program specifies a base class, A, with private, protected, and public data items. Two
classes, B and C, are derived from A. B is publicly derived and C is privately derived.

As we’ve seen before, functions in the derived classes can access protected and public data in
the base class. Objects of the derived classes cannot access private or protected members of the
base class.

What’s new is the difference between publicly derived and privately derived classes. Objects of
the publicly derived class B can access public members of the base class A, while objects of the
privately derived class C cannot; they can only access the public members of their own derived
class. This is shown in Figure 9.7.

Chapter 9
398

FIGURE 9.7
Public and private derivation.

If you don’t supply any access specifier when creating a class, private is assumed.

10 3087 CH09 11/29/01 2:22 PM Page 398

Access Specifiers: When to Use What
How do you decide when to use private as opposed to public inheritance? In most cases a
derived class exists to offer an improved—or a more specialized—version of the base class.
We’ve seen examples of such derived classes (for instance, the CountDn class that adds the
decrement operator to the Counter class and the manager class that is a more specialized ver-
sion of the employee class). In such cases it makes sense for objects of the derived class to
access the public functions of the base class if they want to perform a basic operation, and to
access functions in the derived class to perform the more specialized operations that the
derived class provides. In such cases public derivation is appropriate.

In some situations, however, the derived class is created as a way of completely modifying the
operation of the base class, hiding or disguising its original interface. For example, imagine
that you have already created a really nice Array class that acts like an array but provides
protection against out-of-bounds array indexes. Then suppose you want to use this Array class
as the basis for a Stack class, instead of using a basic array. You might derive Stack from
Array, but you wouldn’t want the users of Stack objects to treat them as if they were arrays,
using the [] operator to access data items, for example. Objects of Stack should always be
treated as if they were stacks, using push() and pop(). That is, you want to disguise the Array
class as a Stack class. In this situation, private derivation would allow you to conceal all the
Array class functions from objects of the derived Stack class.

Levels of Inheritance
Classes can be derived from classes that are themselves derived. Here’s a miniprogram that
shows the idea:

class A
{ };

class B : public A
{ };

class C : public B
{ };

Here B is derived from A, and C is derived from B. The process can be extended to an arbitrary
number of levels—D could be derived from C, and so on.

As a more concrete example, suppose that we decided to add a special kind of laborer called a
foreman to the EMPLOY program. We’ll create a new program, EMPLOY2, that incorporates
objects of class foreman.

Since a foreman is a kind of laborer, the foreman class is derived from the laborer class, as
shown in Figure 9.8.

Inheritance

9

IN
H

ER
ITA

N
C

E
399

10 3087 CH09 11/29/01 2:22 PM Page 399

FIGURE 9.8
UML class diagram for EMPLOY2.

Foremen oversee the widget-stamping operation, supervising groups of laborers. They are
responsible for the widget production quota for their group. A foreman’s ability is measured by
the percentage of production quotas successfully met. The quotas data item in the foreman
class represents this percentage. Here’s the listing for EMPLOY2:

// employ2.cpp
// multiple levels of inheritance
#include <iostream>
using namespace std;
const int LEN = 80; //maximum length of names
//
class employee

{
private:

char name[LEN]; //employee name
unsigned long number; //employee number

public:
void getdata()

Chapter 9
400

foreman

employee

scientistmanager laborer

10 3087 CH09 11/29/01 2:22 PM Page 400

{
cout << “\n Enter last name: “; cin >> name;
cout << “ Enter number: “; cin >> number;
}

void putdata() const
{
cout << “\n Name: “ << name;
cout << “\n Number: “ << number;
}

};
//
class manager : public employee //manager class

{
private:

char title[LEN]; //”vice-president” etc.
double dues; //golf club dues

public:
void getdata()

{
employee::getdata();
cout << “ Enter title: “; cin >> title;
cout << “ Enter golf club dues: “; cin >> dues;
}

void putdata() const
{
employee::putdata();
cout << “\n Title: “ << title;
cout << “\n Golf club dues: “ << dues;
}

};
//
class scientist : public employee //scientist class

{
private:

int pubs; //number of publications
public:

void getdata()
{
employee::getdata();
cout << “ Enter number of pubs: “; cin >> pubs;
}

void putdata() const
{
employee::putdata();
cout << “\n Number of publications: “ << pubs;
}

Inheritance

9

IN
H

ER
ITA

N
C

E
401

10 3087 CH09 11/29/01 2:22 PM Page 401

};
//
class laborer : public employee //laborer class

{
};

//
class foreman : public laborer //foreman class

{
private:

float quotas; //percent of quotas met successfully
public:

void getdata()
{
laborer::getdata();
cout << “ Enter quotas: “; cin >> quotas;
}

void putdata() const
{
laborer::putdata();
cout << “\n Quotas: “ << quotas;
}

};
//
int main()

{
laborer l1;
foreman f1;

cout << endl;
cout << “\nEnter data for laborer 1”;
l1.getdata();
cout << “\nEnter data for foreman 1”;
f1.getdata();

cout << endl;
cout << “\nData on laborer 1”;
l1.putdata();
cout << “\nData on foreman 1”;
f1.putdata();
cout << endl;
return 0;
}

Chapter 9
402

10 3087 CH09 11/29/01 2:22 PM Page 402

Notice that a class hierarchy is not the same as an organization chart. An organization chart
shows lines of command. A class hierarchy results from generalizing common characteristics.
The more general the class, the higher it is on the chart. Thus a laborer is more general than a
foreman, who is a specialized kind of laborer, so laborer is shown above foreman in the class
hierarchy, although a foreman is probably paid more than a laborer.

Multiple Inheritance
A class can be derived from more than one base class. This is called multiple inheritance.
Figure 9.9 shows how this looks when a class C is derived from base classes A and B.

Inheritance

9

IN
H

ER
ITA

N
C

E
403

A B

C

FIGURE 9.9
UML class diagram for multiple inheritance.

The syntax for multiple inheritance is similar to that for single inheritance. In the situation
shown in Figure 9.9, the relationship is expressed like this:

class A // base class A
{
};

class B // base class B
{
};

class C : public A, public B // C is derived from A and B
{
};

The base classes from which C is derived are listed following the colon in C’s specification;
they are separated by commas.

10 3087 CH09 11/29/01 2:22 PM Page 403

Member Functions in Multiple Inheritance
As an example of multiple inheritance, suppose that we need to record the educational
experience of some of the employees in the EMPLOY program. Let’s also suppose that, perhaps
in a different project, we’ve already developed a class called student that models students with
different educational backgrounds. We decide that instead of modifying the employee class to
incorporate educational data, we will add this data by multiple inheritance from the student
class.

The student class stores the name of the school or university last attended and the highest
degree received. Both these data items are stored as strings. Two member functions, getedu()
and putedu(), ask the user for this information and display it.

Educational information is not relevant to every class of employee. Let’s suppose, somewhat
undemocratically, that we don’t need to record the educational experience of laborers; it’s only
relevant for managers and scientists. We therefore modify manager and scientist so that they
inherit from both the employee and student classes, as shown in Figure 9.10.

Chapter 9
404

employee student

manager

scientist

laborer

FIGURE 9.10
UML class diagram for EMPMULT.

10 3087 CH09 11/29/01 2:22 PM Page 404

Here’s a miniprogram that shows these relationships (but leaves out everything else):

class student
{ };

class employee
{ };

class manager : private employee, private student
{ };

class scientist : private employee, private student
{ };

class laborer : public employee
{ };

And here, featuring considerably more detail, is the listing for EMPMULT:

//empmult.cpp
//multiple inheritance with employees and degrees
#include <iostream>
using namespace std;
const int LEN = 80; //maximum length of names
//
class student //educational background

{
private:

char school[LEN]; //name of school or university
char degree[LEN]; //highest degree earned

public:
void getedu()

{
cout << “ Enter name of school or university: “;
cin >> school;
cout << “ Enter highest degree earned \n”;
cout << “ (Highschool, Bachelor’s, Master’s, PhD): “;
cin >> degree;
}

void putedu() const
{
cout << “\n School or university: “ << school;
cout << “\n Highest degree earned: “ << degree;
}

};
//
class employee

{
private:

char name[LEN]; //employee name
unsigned long number; //employee number

Inheritance

9

IN
H

ER
ITA

N
C

E
405

10 3087 CH09 11/29/01 2:22 PM Page 405

public:
void getdata()

{
cout << “\n Enter last name: “; cin >> name;
cout << “ Enter number: “; cin >> number;
}

void putdata() const
{
cout << “\n Name: “ << name;
cout << “\n Number: “ << number;
}

};
//
class manager : private employee, private student //management

{
private:

char title[LEN]; //”vice-president” etc.
double dues; //golf club dues

public:
void getdata()

{
employee::getdata();
cout << “ Enter title: “; cin >> title;
cout << “ Enter golf club dues: “; cin >> dues;
student::getedu();
}

void putdata() const
{
employee::putdata();
cout << “\n Title: “ << title;
cout << “\n Golf club dues: “ << dues;
student::putedu();
}

};
//
class scientist : private employee, private student //scientist

{
private:

int pubs; //number of publications
public:

void getdata()
{
employee::getdata();
cout << “ Enter number of pubs: “; cin >> pubs;
student::getedu();
}

Chapter 9
406

10 3087 CH09 11/29/01 2:22 PM Page 406

void putdata() const
{
employee::putdata();
cout << “\n Number of publications: “ << pubs;
student::putedu();
}

};
//
class laborer : public employee //laborer

{
};

//
int main()

{
manager m1;
scientist s1, s2;
laborer l1;

cout << endl;
cout << “\nEnter data for manager 1”; //get data for
m1.getdata(); //several employees

cout << “\nEnter data for scientist 1”;
s1.getdata();

cout << “\nEnter data for scientist 2”;
s2.getdata();

cout << “\nEnter data for laborer 1”;
l1.getdata();

cout << “\nData on manager 1”; //display data for
m1.putdata(); //several employees

cout << “\nData on scientist 1”;
s1.putdata();

cout << “\nData on scientist 2”;
s2.putdata();

cout << “\nData on laborer 1”;
l1.putdata();
cout << endl;
return 0;
}

Inheritance

9

IN
H

ER
ITA

N
C

E
407

10 3087 CH09 11/29/01 2:22 PM Page 407

The getdata() and putdata() functions in the manager and scientist classes incorporate
calls to functions in the student class, such as

student::getedu();

and

student::putedu();

These routines are accessible in manager and scientist because these classes are descended
from student.

Here’s some sample interaction with EMPMULT:

Enter data for manager 1
Enter last name: Bradley
Enter number: 12
Enter title: Vice-President
Enter golf club dues: 100000
Enter name of school or university: Yale
Enter highest degree earned
(Highschool, Bachelor’s, Master’s, PhD): Bachelor’s

Enter data for scientist 1
Enter last name: Twilling
Enter number: 764
Enter number of pubs: 99
Enter name of school or university: MIT
Enter highest degree earned
(Highschool, Bachelor’s, Master’s, PhD): PhD

Enter data for scientist 2
Enter last name: Yang
Enter number: 845
Enter number of pubs: 101
Enter name of school or university: Stanford
Enter highest degree earned
(Highschool, Bachelor’s, Master’s, PhD): Master’s

Enter data for laborer 1
Enter last name: Jones
Enter number: 48323

As we saw in the EMPLOY and EMPLOY2 examples, the program then displays this information
in roughly the same form.

Chapter 9
408

10 3087 CH09 11/29/01 2:22 PM Page 408

private Derivation in EMPMULT

The manager and scientist classes in EMPMULT are privately derived from the employee
and student classes. There is no need to use public derivation because objects of manager and
scientist never call routines in the employee and student base classes. However, the laborer
class must be publicly derived from employer, since it has no member functions of its own and
relies on those in employee.

Constructors in Multiple Inheritance
EMPMULT has no constructors. Let’s look at an example that does use constructors, and see how
they’re handled in multiple inheritance.

Imagine that we’re writing a program for building contractors, and that this program models
lumber-supply items. It uses a class that represents a quantity of lumber of a certain type: 100
8-foot-long construction grade 2×4s, for example.

The class should store various kinds of data about each such lumber item. We need to know
the length (3'–6'', for example) and we need to store the number of such pieces of lumber and
their unit cost.

We also need to store a description of the lumber we’re talking about. This has two parts. The
first is the nominal dimensions of the cross-section of the lumber. This is given in inches. For
instance, lumber 2 inches by 4 inches (for you metric folks, about 5 cm by 10 cm) is called a
two-by-four. This is usually written 2×4. We also need to know the grade of lumber—rough-cut,
construction grade, surfaced-four-sides, and so on. We find it convenient to create a Type class
to hold this data. This class incorporates member data for the nominal dimensions and the grade
of the lumber, both expressed as strings, such as 2×6 and construction. Member functions get
this information from the user and display it.

We’ll use the Distance class from previous examples to store the length. Finally we create a
Lumber class that inherits both the Type and Distance classes. Here’s the listing for ENGLMULT:

// englmult.cpp
// multiple inheritance with English Distances
#include <iostream>
#include <string>
using namespace std;
//
class Type //type of lumber

{
private:

string dimensions;
string grade;

Inheritance

9

IN
H

ER
ITA

N
C

E
409

10 3087 CH09 11/29/01 2:22 PM Page 409

public: //no-arg constructor
Type() : dimensions(“N/A”), grade(“N/A”)

{ }
//2-arg constructor

Type(string di, string gr) : dimensions(di), grade(gr)
{ }

void gettype() //get type from user
{
cout << “ Enter nominal dimensions (2x4 etc.): “;
cin >> dimensions;
cout << “ Enter grade (rough, const, etc.): “;
cin >> grade;
}

void showtype() const //display type
{
cout << “\n Dimensions: “ << dimensions;
cout << “\n Grade: “ << grade;
}

};
//
class Distance //English Distance class

{
private:

int feet;
float inches;

public: //no-arg constructor
Distance() : feet(0), inches(0.0)

{ } //constructor (two args)
Distance(int ft, float in) : feet(ft), inches(in)

{ }
void getdist() //get length from user

{
cout << “ Enter feet: “; cin >> feet;
cout << “ Enter inches: “; cin >> inches;
}

void showdist() const //display distance
{ cout << feet << “\’-” << inches << ‘\”’; }

};
//
class Lumber : public Type, public Distance

{
private:

int quantity; //number of pieces
double price; //price of each piece

public: //constructor (no args)
Lumber() : Type(), Distance(), quantity(0), price(0.0)

Chapter 9
410

10 3087 CH09 11/29/01 2:22 PM Page 410

{ }
//constructor (6 args)

Lumber(string di, string gr, //args for Type
int ft, float in, //args for Distance
int qu, float prc) : //args for our data
Type(di, gr), //call Type ctor
Distance(ft, in), //call Distance ctor
quantity(qu), price(prc) //initialize our data

{ }
void getlumber()

{
Type::gettype();
Distance::getdist();
cout << “ Enter quantity: “; cin >> quantity;
cout << “ Enter price per piece: “; cin >> price;
}

void showlumber() const
{
Type::showtype();
cout << “\n Length: “;
Distance::showdist();
cout << “\n Price for “ << quantity

<< “ pieces: $” << price * quantity;
}

};
//
int main()

{
Lumber siding; //constructor (no args)

cout << “\nSiding data:\n”;
siding.getlumber(); //get siding from user

//constructor (6 args)
Lumber studs(“2x4”, “const”, 8, 0.0, 200, 4.45F);

//display lumber data
cout << “\nSiding”; siding.showlumber();
cout << “\nStuds”; studs.showlumber();
cout << endl;
return 0;
}

The major new feature in this program is the use of constructors in the derived class Lumber.
These constructors call the appropriate constructors in Type and Distance.

Inheritance

9

IN
H

ER
ITA

N
C

E
411

10 3087 CH09 11/29/01 2:22 PM Page 411

No-Argument Constructor
The no-argument constructor in Type looks like this:

Type()
{ strcpy(dimensions, “N/A”); strcpy(grade, “N/A”); }

This constructor fills in “N/A” (not available) for the dimensions and grade variables so the
user will be made aware if an attempt is made to display data for an uninitialized lumber object.

You’re already familiar with the no-argument constructor in the Distance class:

Distance() : feet(0), inches(0.0)
{ }

The no-argument constructor in Lumber calls both of these constructors.

Lumber() : Type(), Distance(), quantity(0), price(0.0)
{ }

The names of the base-class constructors follow the colon and are separated by commas. When
the Lumber() constructor is invoked, these base-class constructors—Type() and Distance()—
will be executed. The quantity and price attributes are also initialized.

Multi-Argument Constructors
Here is the two-argument constructor for Type:

Type(string di, string gr) : dimensions(di), grade(gr)
{ }

This constructor copies string arguments to the dimensions and grade member data items.

Here’s the constructor for Distance, which is again familiar from previous programs:

Distance(int ft, float in) : feet(ft), inches(in)
{ }

The constructor for Lumber calls both of these constructors, so it must supply values for their
arguments. In addition it has two arguments of its own: the quantity of lumber and the unit price.
Thus this constructor has six arguments. It makes two calls to the two constructors, each of
which takes two arguments, and then initializes its own two data items. Here’s what it looks like:

Lumber(string di, string gr, //args for Type
int ft, float in, //args for Distance
int qu, float prc) : //args for our data
Type(di, gr), //call Type ctor
Distance(ft, in), //call Distance ctor
quantity(qu), price(prc) //initialize our data

{ }

Chapter 9
412

10 3087 CH09 11/29/01 2:22 PM Page 412

Ambiguity in Multiple Inheritance
Odd sorts of problems may surface in certain situations involving multiple inheritance. Here’s
a common one. Two base classes have functions with the same name, while a class derived
from both base classes has no function with this name. How do objects of the derived class
access the correct base class function? The name of the function alone is insufficient, since
the compiler can’t figure out which of the two functions is meant.

Here’s an example, AMBIGU, that demonstrates the situation:

// ambigu.cpp
// demonstrates ambiguity in multiple inheritance
#include <iostream>
using namespace std;
//
class A

{
public:

void show() { cout << “Class A\n”; }
};

class B
{
public:

void show() { cout << “Class B\n”; }
};

class C : public A, public B
{
};

//
int main()

{
C objC; //object of class C

// objC.show(); //ambiguous--will not compile
objC.A::show(); //OK
objC.B::show(); //OK
return 0;
}

The problem is resolved using the scope-resolution operator to specify the class in which the
function lies. Thus

objC.A::show();

refers to the version of show() that’s in the A class, while

objC.B::show();

Inheritance

9

IN
H

ER
ITA

N
C

E
413

10 3087 CH09 11/29/01 2:22 PM Page 413

refers to the function in the B class. Stroustrup (see Appendix H, “Bibliography”) calls this dis-
ambiguation.

Another kind of ambiguity arises if you derive a class from two classes that are each derived
from the same class. This creates a diamond-shaped inheritance tree. The DIAMOND program
shows how this looks.

//diamond.cpp
//investigates diamond-shaped multiple inheritance
#include <iostream>
using namespace std;
//
class A

{
public:

void func();
};

class B : public A
{ };

class C : public A
{ };

class D : public B, public C
{ };

//
int main()

{
D objD;
objD.func(); //ambiguous: won’t compile
return 0;
}

Classes B and C are both derived from class A, and class D is derived by multiple inheritance
from both B and C. Trouble starts if you try to access a member function in class A from an object
of class D. In this example objD tries to access func(). However, both B and C contain a copy of
func(), inherited from A. The compiler can’t decide which copy to use, and signals an error.

There are various advanced ways of coping with this problem, but the fact that such ambiguities
can arise causes many experts to recommend avoiding multiple inheritance altogether. You
should certainly not use it in serious programs unless you have considerable experience.

Aggregation: Classes Within Classes
We’ll discuss aggregation here because, while it is not directly related to inheritance, both
aggregation and inheritance are class relationships that are more specialized than associations.
It is instructive to compare and contrast them.

Chapter 9
414

10 3087 CH09 11/29/01 2:22 PM Page 414

If a class B is derived by inheritance from a class A, we can say that “B is a kind of A.” This is
because B has all the characteristics of A, and in addition some of its own. It’s like saying that a
starling is a kind of bird: A starling has the characteristics shared by all birds (wings, feathers,
and so on) but has some distinctive characteristics of its own (such as dark iridescent plumage).
For this reason inheritance is often called a “kind of” relationship.

Aggregation is called a “has a” relationship. We say a library has a book or an invoice has an
item line. Aggregation is also called a “part-whole” relationship: the book is part of the library.

In object-oriented programming, aggregation may occur when one object is an attribute of
another. Here’s a case where an object of class A is an attribute of class B:

class A
{
};

class B
{
A objA; // define objA as an object of class A
};

In the UML, aggregation is considered a special kind of association. Sometimes it’s hard to tell
when an association is also an aggregation. It’s always safe to call a relationship an association,
but if class A contains objects of class B, and is organizationally superior to class B, it’s a good
candidate for aggregation. A company might have an aggregation of employees, or a stamp
collection might have an aggregation of stamps.

Aggregation is shown in the same way as association in UML class diagrams, except that the
“whole” end of the association line has an open diamond-shaped arrowhead. Figure 9.11
shows how this looks.

Inheritance

9

IN
H

ER
ITA

N
C

E
415

Library

Publications Staff

FIGURE 9.11
UML class diagram showing aggregation.

10 3087 CH09 11/29/01 2:22 PM Page 415

Aggregation in the EMPCONT Program
Let’s rearrange the EMPMULT program to use aggregation instead of inheritance. In EMPMULT the
manager and scientist classes are derived from the employee and student classes using the
inheritance relationship. In our new program, EMPCONT, the manager and scientist classes
contain instances of the employee and student classes as attributes. This aggregation relationship
is shown in Figure 9.12.

Chapter 9
416

manager

scientistemployee student

laborer

FIGURE 9.12
UML class diagram for EMPCONT.

The following miniprogram shows these relationships in a different way:

class student
{};

class employee
{};

class manager
{
student stu; // stu is an object of class student
employee emp; // emp is an object of class employee
};

class scientist
{
student stu; // stu is an object of class student
employee emp; // emp is an object of class employee
};

class laborer
{
employee emp; // emp is an object of class employee
};

10 3087 CH09 11/29/01 2:22 PM Page 416

Here’s the full-scale listing for EMPCONT:

// empcont.cpp
// containership with employees and degrees
#include <iostream>
#include <string>
using namespace std;
//
class student //educational background

{
private:

string school; //name of school or university
string degree; //highest degree earned

public:
void getedu()

{
cout << “ Enter name of school or university: “;
cin >> school;
cout << “ Enter highest degree earned \n”;
cout << “ (Highschool, Bachelor’s, Master’s, PhD): “;
cin >> degree;
}

void putedu() const
{
cout << “\n School or university: “ << school;
cout << “\n Highest degree earned: “ << degree;
}

};
//
class employee

{
private:

string name; //employee name
unsigned long number; //employee number

public:
void getdata()

{
cout << “\n Enter last name: “; cin >> name;
cout << “ Enter number: “; cin >> number;
}

void putdata() const
{
cout << “\n Name: “ << name;
cout << “\n Number: “ << number;
}

};
//
class manager //management

Inheritance

9

IN
H

ER
ITA

N
C

E
417

10 3087 CH09 11/29/01 2:22 PM Page 417

{
private:

string title; //”vice-president” etc.
double dues; //golf club dues
employee emp; //object of class employee
student stu; //object of class student

public:
void getdata()

{
emp.getdata();
cout << “ Enter title: “; cin >> title;
cout << “ Enter golf club dues: “; cin >> dues;
stu.getedu();
}

void putdata() const
{
emp.putdata();
cout << “\n Title: “ << title;
cout << “\n Golf club dues: “ << dues;
stu.putedu();
}

};
//
class scientist //scientist

{
private:

int pubs; //number of publications
employee emp; //object of class employee
student stu; //object of class student

public:
void getdata()

{
emp.getdata();
cout << “ Enter number of pubs: “; cin >> pubs;
stu.getedu();
}

void putdata() const
{
emp.putdata();
cout << “\n Number of publications: “ << pubs;
stu.putedu();
}

};
//
class laborer //laborer

{

Chapter 9
418

10 3087 CH09 11/29/01 2:22 PM Page 418

private:
employee emp; //object of class employee

public:
void getdata()

{ emp.getdata(); }
void putdata() const

{ emp.putdata(); }
};

//
int main()

{
manager m1;
scientist s1, s2;
laborer l1;

cout << endl;
cout << “\nEnter data for manager 1”; //get data for
m1.getdata(); //several employees

cout << “\nEnter data for scientist 1”;
s1.getdata();

cout << “\nEnter data for scientist 2”;
s2.getdata();

cout << “\nEnter data for laborer 1”;
l1.getdata();

cout << “\nData on manager 1”; //display data for
m1.putdata(); //several employees

cout << “\nData on scientist 1”;
s1.putdata();

cout << “\nData on scientist 2”;
s2.putdata();

cout << “\nData on laborer 1”;
l1.putdata();
cout << endl;
return 0;
}

The student and employee classes are the same in EMPCONT as they were in EMPMULT, but they
are related in a different way to the manager and scientist classes.

Inheritance

9

IN
H

ER
ITA

N
C

E
419

10 3087 CH09 11/29/01 2:22 PM Page 419

Composition: A Stronger Aggregation
Composition is a stronger form of aggregation. It has all the characteristics of aggregation, plus
two more:

• The part may belong to only one whole.

• The lifetime of the part is the same as the lifetime of the whole.

A car is composed of doors (among other things). The doors can’t belong to some other car,
and they are born and die along with the car. A room is composed of a floor, ceiling, and
walls. While aggregation is a “has a” relationship, composition is a “consists of” relationship.

In UML diagrams, composition is shown in the same way as aggregation, except that the
diamond-shaped arrowhead is solid instead of open. This is shown in Figure 9.13.

Chapter 9
420

Car

Doors Engine

FIGURE 9.13
UML class diagram showing composition.

Even a single object can be related to a class by composition. In a car there is only one engine.

Inheritance and Program Development
The program-development process, as practiced for decades by programmers everywhere, is
being fundamentally altered by object-oriented programming. This is due not only to the use
of classes in OOP but to inheritance as well. Let’s see how this comes about.

Programmer A creates a class. Perhaps it’s something like the Distance class, with a complete
set of member functions for arithmetic operations on a user-defined data type.

10 3087 CH09 11/29/01 2:22 PM Page 420

Programmer B likes the Distance class but thinks it could be improved by using signed
distances. The solution is to create a new class, like DistSign in the ENGLEN example, that
is derived from Distance but incorporates the extensions necessary to implement signed distances.

Programmers C and D then write applications that use the DistSign class.

Programmer B may not have access to the source code for the Distance member functions,
and programmers C and D may not have access to the source code for DistSign. Yet, because
of the software reusability feature of C++, B can modify and extend the work of A, and C and
D can make use of the work of B (and A).

Notice that the distinction between software tool developers and application writers is becoming
blurred. Programmer A creates a general-purpose programming tool, the Distance class.
Programmer B creates a specialized version of this class, the DistSign class. Programmers C
and D create applications. A is a tool developer, and C and D are applications developers. B is
somewhere in between. In any case OOP is making the programming scene more flexible and
at the same time more complex.

In Chapter 13 we’ll see how a class can be divided into a client-accessible part and a part that is
distributed only in object form, so it can be used by other programmers without the distribution
of source code.

Summary
A class, called the derived class, can inherit the features of another class, called the base class.
The derived class can add other features of its own, so it becomes a specialized version of the
base class. Inheritance provides a powerful way to extend the capabilities of existing classes,
and to design programs using hierarchical relationships.

Accessibility of base class members from derived classes and from objects of derived classes is
an important issue. Data or functions in the base class that are prefaced by the keyword pro-
tected can be accessed from derived classes but not by any other objects, including objects of
derived classes. Classes may be publicly or privately derived from base classes. Objects of a
publicly derived class can access public members of the base class, while objects of a privately
derived class cannot.

A class can be derived from more than one base class. This is called multiple inheritance. A
class can also be contained within another class.

In the UML, inheritance is called generalization. This relationship is represented in class diagrams
by an open triangle pointing to the base (parent) class.

Inheritance

9

IN
H

ER
ITA

N
C

E
421

10 3087 CH09 11/29/01 2:22 PM Page 421

Aggregation is a “has a” or “part-whole” relationship: one class contains objects of another
class. Aggregation is represented in UML class diagrams by an open diamond pointing to the
“whole” part of the part-whole pair. Composition is a strong form of aggregation. Its arrowhead
is solid rather than open.

Inheritance permits the reusability of software: Derived classes can extend the capabilities of
base classes with no need to modify—or even access the source code of—the base class. This
leads to new flexibility in the software development process, and to a wider range of roles for
software developers.

Questions
Answers to these questions can be found in Appendix G.

1. Inheritance is a way to

a. make general classes into more specific classes.

b. pass arguments to objects of classes.

c. add features to existing classes without rewriting them.

d. improve data hiding and encapsulation.

2. A “child” class is said to be _________ from a base class.

3. Advantages of inheritance include

a. providing class growth through natural selection.

b. facilitating class libraries.

c. avoiding the rewriting of code.

d. providing a useful conceptual framework.

4. Write the first line of the specifier for a class Bosworth that is publicly derived from a
class Alphonso.

5. True or false: Adding a derived class to a base class requires fundamental changes to the
base class.

6. To be accessed from a member function of the derived class, data or functions in the base
class must be public or _________.

7. If a base class contains a member function basefunc(), and a derived class does not contain
a function with this name, can an object of the derived class access basefunc()?

8. Assume that the classes mentioned in Question 4 and the class Alphonso contain a member
function called alfunc(). Write a statement that allows object BosworthObj of class
Bosworth to access alfunc().

Chapter 9
422

10 3087 CH09 11/29/01 2:22 PM Page 422

9. True or false: If no constructors are specified for a derived class, objects of the derived
class will use the constructors in the base class.

10. If a base class and a derived class each include a member function with the same name,
which member function will be called by an object of the derived class, assuming the
scope-resolution operator is not used?

11. Write a declarator for a no-argument constructor of the derived class Bosworth of
Question 4 that calls a no-argument constructor in the base class Alphonso.

12. The scope-resolution operator usually

a. limits the visibility of variables to a certain function.

b. tells what base class a class is derived from.

c. specifies a particular class.

d. resolves ambiguities.

13. True or false: It is sometimes useful to specify a class from which no objects will ever be
created.

14. Assume that there is a class Derv that is derived from a base class Base. Write the
declarator for a derived-class constructor that takes one argument and passes this argu-
ment along to the constructor in the base class.

15. Assume a class Derv that is privately derived from class Base. An object of class Derv
located in main() can access

a. public members of Derv.

b. protected members of Derv.

c. private members of Derv.

d. public members of Base.

e. protected members of Base.

f. private members of Base.

16. True or false: A class D can be derived from a class C, which is derived from a class B,
which is derived from a class A.

17. A class hierarchy

a. shows the same relationships as an organization chart.

b. describes “has a” relationships.

c. describes “is a kind of” relationships.

d. shows the same relationships as a family tree.

18. Write the first line of a specifier for a class Tire that is derived from class Wheel and
from class Rubber.

Inheritance

9

IN
H

ER
ITA

N
C

E
423

10 3087 CH09 11/29/01 2:22 PM Page 423

19. Assume a class Derv derived from a base class Base. Both classes contain a member
function func() that takes no arguments. Write a statement to go in a member function
of Derv that calls func() in the base class.

20. True or false: It is illegal to make objects of one class members of another class.

21. In the UML, inheritance is called _____________.

22. Aggregation is

a. a stronger form of instantiation.

b. a stronger form of generalization.

c. a stronger form of composition.

d. a “has a” relationship.

23. True or false: the arrow representing generalization points to the more specific class.

24. Composition is a ___________ form of ____________.

Exercises
Answers to starred exercises can be found in Appendix G.

*1. Imagine a publishing company that markets both book and audiocassette versions of its
works. Create a class publication that stores the title (a string) and price (type float)
of a publication. From this class derive two classes: book, which adds a page count (type
int), and tape, which adds a playing time in minutes (type float). Each of these three
classes should have a getdata() function to get its data from the user at the keyboard,
and a putdata() function to display its data.

Write a main() program to test the book and tape classes by creating instances of them,
asking the user to fill in data with getdata(), and then displaying the data with putdata().

*2. Recall the STRCONV example from Chapter 8. The String class in this example has a
flaw: It does not protect itself if its objects are initialized to have too many characters.
(The SZ constant has the value 80.) For example, the definition

String s = “This string will surely exceed the width of the “
“screen, which is what the SZ constant represents.”;

will cause the str array in s to overflow, with unpredictable consequences, such as
crashing the system.

With String as a base class, derive a class Pstring (for “protected string”) that prevents
buffer overflow when too long a string constant is used in a definition. A new constructor
in the derived class should copy only SZ–1 characters into str if the string constant is
longer, but copy the entire constant if it’s shorter. Write a main() program to test different
lengths of strings.

Chapter 9
424

10 3087 CH09 11/29/01 2:22 PM Page 424

*3. Start with the publication, book, and tape classes of Exercise 1. Add a base class sales
that holds an array of three floats so that it can record the dollar sales of a particular
publication for the last three months. Include a getdata() function to get three sales
amounts from the user, and a putdata() function to display the sales figures. Alter the
book and tape classes so they are derived from both publication and sales. An object
of class book or tape should input and output sales data along with its other data. Write
a main() function to create a book object and a tape object and exercise their input/output
capabilities.

4. Assume that the publisher in Exercises 1 and 3 decides to add a third way to distribute
books: on computer disk, for those who like to do their reading on their laptop. Add a
disk class that, like book and tape, is derived from publication. The disk class should
incorporate the same member functions as the other classes. The data item unique to this
class is the disk type: either CD or DVD. You can use an enum type to store this item.
The user could select the appropriate type by typing c or d.

5. Derive a class called employee2 from the employee class in the EMPLOY program in this
chapter. This new class should add a type double data item called compensation, and
also an enum type called period to indicate whether the employee is paid hourly, weekly,
or monthly. For simplicity you can change the manager, scientist, and laborer classes
so they are derived from employee2 instead of employee. However, note that in many
circumstances it might be more in the spirit of OOP to create a separate base class called
compensation and three new classes manager2, scientist2, and laborer2, and use
multiple inheritance to derive these three classes from the original manager, scientist,
and laborer classes and from compensation. This way none of the original classes
needs to be modified.

6. Start with the ARROVER3 program in Chapter 8. Keep the safearay class the same as in
that program, and, using inheritance, derive the capability for the user to specify both the
upper and lower bounds of the array in a constructor. This is similar to Exercise 9 in
Chapter 8, except that inheritance is used to derive a new class (you can call it safehilo)
instead of modifying the original class.

7. Start with the COUNTEN2 program in this chapter. It can increment or decrement a
counter, but only using prefix notation. Using inheritance, add the ability to use postfix
notation for both incrementing and decrementing. (See Chapter 8 for a description of
postfix notation.)

8. Operators in some computer languages, such as Visual Basic, allow you to select parts of
an existing string and assign them to other strings. (The Standard C++ string class
offers a different approach.) Using inheritance, add this capability to the Pstring class of
Exercise 2. In the derived class, Pstring2, incorporate three new functions: left(),
mid(), and right().

Inheritance

9

IN
H

ER
ITA

N
C

E
425

10 3087 CH09 11/29/01 2:22 PM Page 425

s2.left(s1, n) // s2 is assigned the leftmost n characters
// from s1

s2.mid(s1, s, n) // s2 is assigned the middle n characters
// from s1, starting at character number s
// (leftmost character is 0)

s2.right(s1, n) // s2 is assigned the rightmost n characters
// from s1

You can use for loops to copy the appropriate parts of s1, character by character, to a
temporary Pstring2 object, which is then returned. For extra credit, have these functions
return by reference, so they can be used on the left side of the equal sign to change parts
of an existing string.

9. Start with the publication, book, and tape classes of Exercise 1. Suppose you want to
add the date of publication for both books and tapes. From the publication class, derive
a new class called publication2 that includes this member data. Then change book and
tape so they are derived from publication2 instead of publication. Make all the
necessary changes in member functions so the user can input and output dates along with
the other data. For the dates, you can use the date class from Exercise 5 in Chapter 6,
which stores a date as three ints, for month, day, and year.

10. There is only one kind of manager in the EMPMULT program in this chapter. Any serious
company has executives as well as managers. From the manager class derive a class
called executive. (We’ll assume an executive is a high-end kind of manager.) The addi-
tional data in the executive class will be the size of the employee’s yearly bonus and the
number of shares of company stock held in his or her stock-option plan. Add the appropriate
member functions so these data items can be input and displayed along with the other
manager data.

11. Various situations require that pairs of numbers be treated as a unit. For example, each
screen coordinate has an x (horizontal) component and a y (vertical) component. Represent
such a pair of numbers as a structure called pair that comprises two int member variables.

Now, assume you want to be able to store pair variables on a stack. That is, you want to
be able to place a pair (which contains two integers) onto a stack using a single call to a
push() function with a structure of type pair as an argument, and retrieve a pair using a
single call to a pop() function, which will return a structure of type pair. Start with the
Stack2 class in the STAKEN program in this chapter, and from it derive a new class called
pairStack. This new class need contain only two members: the overloaded push()
and pop() functions. The pairStack::push() function will need to make two calls to
Stack2::push() to store the two integers in its pair, and the pairStack::pop() function
will need to make two calls to Stack2::pop() (although not necessarily in the same order).

Chapter 9
426

10 3087 CH09 11/29/01 2:22 PM Page 426

12. Amazing as it may seem, the old British pounds-shillings-pence money notation
(£9.19.11—see Exercise 10 in Chapter 4, “Structures”) isn’t the whole story. A penny
was further divided into halfpennies and farthings, with a farthing being worth 1/4 of a
penny. There was a halfpenny coin, a farthing coin, and a halffarthing coin. Fortunately
all this can be expressed numerically in eighths of a penny:

1/8 penny is a halffarthing

1/4 penny is a farthing

3/8 penny is a farthing and a half

1/2 penny is a halfpenny (pronounced ha’penny)

5/8 penny is a halfpenny plus a halffarthing

3/4 penny is a halfpenny plus a farthing

7/8 penny is a halfpenny plus a farthing and a half

Let’s assume we want to add to the sterling class the ability to handle such fractional
pennies. The I/O format can be something like £1.1.1-1/4 or £9.19.11-7/8, where the
hyphen separates the fraction from the pennies.

Derive a new class called sterfrac from sterling. It should be able to perform the four
arithmetic operations on sterling quantities that include eighths of a penny. Its only mem-
ber data is an int indicating the number of eighths; you can call it eighths. You’ll need
to overload many of the functions in sterling to handle the eighths. The user should be
able to type any fraction in lowest terms, and the display should also show fractions in
lowest terms. It’s not necessary to use the full-scale fraction class (see Exercise 11 in
Chapter 6), but you could try that for extra credit.

Inheritance

9

IN
H

ER
ITA

N
C

E
427

10 3087 CH09 11/29/01 2:22 PM Page 427

10 3087 CH09 11/29/01 2:22 PM Page 428

